Phase I Oncology Designs: Comparison of Select Designs

Lixin Lang, Susan Parker, Jong-Soon Park, and Ashish Sanil^{*}

BASS XV November 3-7, 2008

* Early Contributor

Outline

- Phase I Oncology Studies
- Traditional 3+3 Study Design
- Alternative Designs
- Design Methodology
- Comparison using Simulation
- Remarks

Phase I Oncology Studies

- Typically small, uncontrolled dose escalation studies
 - Multiple ascending dose (MAD)
 - Option to expand at maximum tolerated dose (MTD)
- Objectives
 - Identify the MTD
 - Determine recommended Phase II dose (RP2 dose)
 - Establish safety and tolerability
- Pre-specified dose levels
 - Choice of dose levels driven by pre-clinical data and perhaps drug supply
- Patients studies
 - Certain degree of side effects is acceptable
 - Ethical concern of treating subjects at sub-optimal dose levels

Phase 1 Design Concerns

- Simplicity
- Correct identification/estimation of MTD
- Treat few subjects at sub-optimal levels and overly toxic levels
- Sample Size
- Gain knowledge of toxicity rate

Traditional 3+3 Design Algorithm

Traditional 3+3 Design

- Pros
 - Widely accepted
 - Simple and flexible
 - Protects against excessive toxicity
- Cons
 - No statistical basis
 - No target toxicity
 - Too slow dose escalation
 - Many patients may be treated in subtherapeutic dose range

Motivation to Examine Alternative Designs

- Pursue statistical rigor in determining MTD
 - 3+3 has no statistical justification
 - MTD can be estimated by modeling
- Gain experience with methodologies
 - Understand trade offs
 - Identify ideal situations for implementation
 - Wider acceptance

Alternative Phase 1 Study Designs

- Standard 3+3 Design MTD is identified
- Bayesian approaches MTD can be estimated
 - Continual reassessment method (CRM)
 - Original CRM
 - Modified CRM (mCRM)
 - Escalation with overdose control (EWOC)
 - Toxicity probability intervals (TPI)
 - Decision-theoretic approaches
 - Bayesian sequential optimal design
- Accelerated titration design (ATD) two stage design
- Random walk rules (RWR) nonparametric approach
- Pharmacokinetic (PK) guided dose escalation

Problem Setup

- Notations
 - At each cohort *i*:
 - *d_i*: Dose tested *n_i*: Sample size *x_i*: Number of DLTs
- Problem

 τ : Toxicity tolerance prob.

 γ : Unknown MTD

Given: d_1, \dots, d_j x_1, \dots, x_j n_1, \dots, n_j To Find: d_{j+1} , or, γ , such that $\Pr\{\text{DLT at } \gamma\} \le \tau$?

The Generic Bayesian Approach

- Model $x \sim \text{Binomial}(n, p)$ $p = \Pr\{DLT; d, \theta\}$
- Prior on θ $g(\theta)$
- **Posterior** $p(\theta | x_1, ..., x_j; n_1, ..., n_j, d_1, ..., d_j)$

$$= \frac{\prod_{i=1}^{j} p^{x_i} (1-p)^{n_i - x_i} \cdot g(\theta)}{\int \prod_{i=1}^{j} p^{x_i} (1-p)^{n_i - x_i} \cdot g(\theta) d\theta}$$
$$\propto \prod_{i=1}^{j} p^{x_i} (1-p)^{n_i - x_i} \cdot g(\theta)$$

Continual Reassessment Method

[O'Quigley, et al 1990]

• Model $p = f(d)^{\alpha}$

f: monotone increasing function of dose d

- Prior $exp(-\alpha)$
- Dose Escalation

Find the dose level d_{j+1} such that $E[p|data;d_{j+1}]$ is close to τ

Modified CRM

[Goodman, et al 1995; Thall & Lee, 2003]

Model

$$p = \frac{\exp(\alpha + \beta d)}{1 + \exp(\alpha + \beta \tilde{d})}$$

 \tilde{d} : dose in log scale and centered.

- Prior $\alpha \sim N(\mu_{\alpha}, \sigma_{\alpha}^2)$ $\beta \sim N(\mu_{\beta}, \sigma_{\beta}^2)$
- Dose Escalation Find the \tilde{d}_{i+1} such that $E(p | data; \tilde{d}_{i+1}) = \tau$

Modified Trial Conduct

- Start at the lowest dose and proceed
- Dose escalation permitted only to the next higher dose

Estimation with Overdose Control (EWOC)

[Babb, Rogatko, and Zacks(1998)]

• Model
$$p = \frac{\exp(\alpha + \beta d)}{1 + \exp(\alpha + \beta d)}$$

Transformation

$$\rho_{0} = \frac{\exp(\alpha + \beta d_{0})}{1 + \exp(\alpha + \beta d_{0})}$$

$$\tau = \frac{\exp(\alpha + \beta \gamma)}{1 + \exp(\alpha + \beta \gamma)}$$
$$\Rightarrow p = \pi(\rho_{0}, \gamma, d)$$

$$\rho_0 \sim U(0,0.2) \quad \gamma \sim U(d_{\min}, d_{\max})$$

BASS XV: November 3-7, 2008

EWOC Dose Selection

Dose Estimation

Based on marginal posterior distribution of

 $F_{\gamma}(x) = \Pr(\gamma \leq x \mid data)$

dose for next cohort : $\Rightarrow F_{\gamma}^{-1}(\phi)$

 $e.g, \phi = 0.25$

Dose Selection

Compare with the predefined dose levels, select the one which is the largest below the estimated dose

Toxicity Posterior Probability Intervals (TPI)

[Ji, Li, Bekele (2007)]

- Model
 - Nonparametric for toxicity and dose levels
 - Higher dose higher toxicity
- Prior

 $p_i \sim \text{non-informative Beta}$ suggested $p_i \sim Beta(0.005, 0.005)$

Posterior

$$p_j \sim Beta(x_j + 0.005, n_j - x_j + 0.005)$$

TPI Dose Selection

Dose Escalation

Pick constants
$$K_1$$
 and K_2 , and let $\sigma_j = SD(p_j)$
 $\Pr_{up} = \Pr\{ 0 < p_j \le \tau - K_2 \sigma_j \mid data \}$
 $\Pr_{same} = \Pr\{ \tau - K_2 \sigma_j < p_j \le \tau + K_1 \sigma_j \mid data \}$
 $\Pr_{down} = \Pr\{ \tau + K_1 \sigma_j < p_j \le 1 \mid data \}$
 $\Pr_{stop} = \Pr\{ p_j > \tau \mid data \}$

- $\Pr_{stop} > threshold value, \rightarrow states > threshold value$
- Pr_{up} is largest,
- Pr_{same} is largest,
- Pr_{down} is largest,

- \rightarrow stop
- \rightarrow dose increased
- \rightarrow dose unchanged
- \rightarrow dose reduced

Bayesian Computing

- Previously perceived to be difficult to implement and a black box
- Methodology:
 - Numerical
 - MCMC
 - Weighted Resampling

General Comments

- Pros
 - Model based approach
 - Ability to incorporate pre-clinical information
 - Estimate MTD using all available safety data
- Cons
 - Perception by clinicians as black box method
 - Implementation requires validated software and additional resources

3+3, mCRM, TPI, and EWOC Simulation

- Compare design performance across 6 toxicity scenarios
 - MTD Selection
 - MTD Variability
 - Under/Over dosing
 - Sample size

Simulation

- Implementation
 - 10,000 trials
 - Target toxicity of 0.33
 - Cohort Size of 3
 - Start at lowest dose
 - Maximum number of patients = 30 for Bayesian methods

Toxicity Scenarios for Simulation

BASS XV: November 3-7, 2008

Distribution of MTD

Proportion of Subjects Under/Over Dosed

BASS XV: November 3-7, 2008

Root Mean Squared Error of Selected MTD

Sample Size

Overall Experience

	3+3	TPI	mCRM	EWOC
Simplicity of Implementation	:)	\odot		
Few subjects treated at sub- optimal levels		\odot	:)	
Few subjects treated at toxic levels		Х	Х	\odot
Small sample size		X		(:)
Identification/ Selection of MTD	Х	\odot	\odot	

Remarks

- Use simulations to examine operating characteristics of 3+3 designs (and others) prior to study start-up
- Even with the traditional design, we can do model based estimation of MTD post-hoc
- Continue to evaluate the operating characteristics of alternative designs
- Proactively engage clinicians and senior management

References

- **O'Quigley, Pepe and Fisher** (1990). Continual Reassessment Method: A practical design for phase I clinical trials in cancer. *Biometrics*. **46**:33-48.
- **Goodman, Zahurak and Piantadosi** (1995). Some practical improvements in the Continual Reassessment Method for phase I studies. *Stat. Med.* **14**: 1149-1161.
- **Babb, Rogatko and Zacks** (1998). Cancer phase I clinical trials: Efficient dose escalation with overdose control. *Stat. Med.*, **17**:1103-1120.
- **Rosenberger and Haines** (2002). Competing designs for phase I clinical trials: a review. *Stat Med.* **21**: 2757-2770.
- **Tigiouart, Rogatko and Babb** (2005). Flexible bayesian methods for cancer phase I clinical trials. Dose escalation with overdose control. *Stat. Med.* **24**:2183-2196.
- **Thall and Lee** (2003). Practical model-based dose-finding in phase I clinical trials: Methods based on toxicity. *Int J Gynecological Cancer*. **13**:251-261.
- **Ji, Lee and Bekele** (2007). Dose-finding in oncology clinical trials based on toxicity probability intervals. Clinical Trials. **4**:235-244.

